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Optimal model-based
solution and analysis

Extraction of key
domain knowledge

Architecture design
for a given task

Phase 1: Simplified Model-Based Approach
1. Devise “compact” model amenable for analysis

2. Solve optimally for a chosen optimality criterion

3. Analyze the solution and derive performance bounds

Example 1: Underwater Acoustic Localization

1. Devise compact model: 3-ray propagation with AWGN [1]

2. Solve optimally: Least-squares estimator [1]
p̂ = argmax

p∈R3×1
λmax

(
Q(p,x1, . . . ,xL)︸ ︷︷ ︸
Position- and data-
dependent matrix

)

3. Analyze performance: Cramér-Rao lower bound

Example 2: Interference Rejection in RF Digital
Communication Systems

1. Devise compact model: Gaussian cyclostationary [2]

Temporal covariance of
an OFDM signal

2. Solve optimally: MMSE and MAP-QLMMSE [3]

ŝMMSE =
Ks∑

ms=1

Kb∑
mb=1

Pr(ks = ms,kb = mb|y) ŝLMMSE(ms,mb)

ŝMAP-QLMMSE ≜ ŝLMMSE(k̂MAP
b )

3. Performance bound: MMSE

Phase 2: Key Domain Knowledge
1. Identify key signal statistics (e.g., sufficient statistic)

2. Pinpoint weaknesses of optimal model-based solution

3. Select learning type based on measure of “goodness”

Example 1: Underwater Acoustic Localization
1. Sufficient statistics: empirical auto- cross-correlations [4]

2. Model-based solution weaknesses: High computational
complexity (eigenvalue problem for each point on the grid,

nonlinear (and nonconvex) optimization), sensitive to
model mismatch, impractical for general bathymetry

3. Learning type: Measure of goodness → MSE
=⇒ Regression

Example 2: Interference Rejection in RF Digital
Communication Systems

1. Key signal statistics: cyclostationarity → cyclic periods

OFDM → FFT size [5]
and

underlying discrete “nature” (alphabet)

2. Model-based solution weaknesses: High computational
complexity (inversion of large matrices, brute-force search
over all possible sequences), Does not easily generalize

when channel impairments are considered
3. Learning type: Measure of goodness → MSE / BER

=⇒ Regression / Classification

Phase 3: Architecture Design
1. Determine input structure informed by key statistics

2. Choose/Develop NN main structure / building block

3. Set key hyperparameters and training procedure

4. Select loss functions that are matched to estimands

Example 1: Underwater Acoustic Localization
1. Input structure: second-order statistics tensor [4]

2. Main building block: Conv2D → joint filtering of all
correlation functions simultaneously

3. Key hyperparameters: kernel size of first layer →
maximum estimated time-delay between different sensors
Training procedure: (i) per coordinate → (ii) 3D position

4. Loss functions: 3D position → squared-error in spherical
coordinates (gradients of different coordinates numerically

dependent, periodic in azimuth/inclination angles)

Example 2: Interference Rejection in RF Digital
Communication Systems

1. Input structure: separated real and imaginary parts of the
input mixture (widely linear estimation)

2. Chosen structure: UNet [3, 5]—down- and up-sampling
operations (filtering at different temporal resolutions)
3. Key hyperparameters: kernel size of first layer →

capture nonlocal correlations (e.g., cyclic prefix of OFDM)
4. Loss functions: source separation → squared-error

signal-of-interest demodulation → cross-entropy
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